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CT Image Quality Assessment

1 Goal: Non-reference assessment of CT image quality
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Image Source: LDCTIQAC Dataset



IQA Scoring Criteria

Score = Quality Diagnostic Quality Criteria

0 Bad Desired features are not shown

1 Poor Diagnostic interpretation is impossible
2 Fair Suitable for compromised interpretation
3 Good Good for diagnostic interpretation

4 Excellent | Anatomical features are clearly visible
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|QA Scoring Criteria

Score = Quality Diagnostic Quality Criteria

0 Bad Desired features are not shown

1 Poor Diagnostic interpretation is impossible
2 Fair Suitable for compromised interpretation
3 Good Good for diagnostic interpretation

4 Excellent | Anatomical features are clearly visible

IQA: 0.80

1 Radiologists' assigned scores are averaged
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|QA Scoring Criteria

Score = Quality Diagnostic Quality Criteria

0 Bad Desired features are not shown

1 Poor Diagnostic interpretation is impossible

2 Fair Suitable for compromised interpretation

3 Good Good for diagnostic interpretation y
4 Excellent | Anatomical features are clearly visible

IQA: 3.60

1 Radiologists' assigned scores are averaged
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Clinical Motivations

1 Low-dose challenge: Dose reduction compromises image quality in clinical CT scans

1 IQA role: Image Quality Assessment ensures diagnostic reliability in low-dose settings



% University of
Kentucky

Technical Motivations

1 Transformer efficiency: Enables scalable feature extraction with lower computational cost

1 CT assessment: Well-suited for efficient analysis of CT image slices
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Contributions

1 Novel transformer-based architecture (Swin-KAT) integrating KAN into Swin Transformer
1 Aninnovative attention-based approach combining MLP and KAN

1 Generalized performance of Swin-KAT in predicting IQA from abdominal CT images



Existing Models
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Model Method Architecture Details
MD-IQA Unsupervised IQA | Vision Transformer |IQA using many images without
(no labels needed) |and ConvNeXt labeled quality scores.
Vision Transformer, .
D-BIQA Generated- Swin Transformer Ielcllpc\):i)%fn?gllglarmegngate 3
reference IQA and Transposed . y9
; references.
Attention Blocks
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Proposed Swin-KAT

O Modifies Swin Transformer to help capture hierarchical visual features

O Dual cross-attention paths (MK-CA) combining multilayer perceptron and Kolmogrov-Arnold
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(b) MK-CA embedded in

(@) The architecture of Swin-KAT the Swin-KAT block

(c) MK-CA

Rifa et al. ISBI 2025



Swin Transformer
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(a) Architecture

W-MSA: Multi-head self attention w/ regular windowing
SW-MSA: Multi-head self attention w/ shifted windowing

(b) Two Successive Swin Transformer Blocks

Liu et al. ICCV, 2021



% University of
Kentucky

Kolmogorov-Arnold Network (KAN)

O KANSs have learnable activation functions on edges which improves scalability

U This design allows KANSs to capture intricate data structures better than traditional MLPs

ixed activation functions (h} R — learnable activation functions
- . N T
on nodes A, A Y A on edges
/ /%g Z“jﬁ{& ‘-:"""—" sum operation on nodes
learnable weights LA A ’?\: ,Ft.f A ::r P
on edges \\hj/// ‘“‘\J/;f’
MLP KAN

Liu et al. ICLR 2025



Swin-KAT

1 N denotes the number of repetitions of the
procedure.

1 n is the number of stages.

QR (M) = () 7 Candn€ (1,234},

d, is the downsampling factor.

1 C,, is the channel multiplier.
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Swin-KAT Block
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MK-CA Path

A cross-attention based approach
combining MLP and KAN

Rifa et al. ISBI 2025



Datasets

1 Low-Dose CT Image Quality Assessment (LDCTIQA) Challenge dataset

Set Count Details
.. To compare against the existing methods:
Training Set| 1,000 train (700), val (100), and test (200)
Test Set 300 Additional eva_luatlon to ensure
comprehensive assessment
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Quantitative Results

No. Methods r p T S
1 DBCNN 09714 09734 0.8808 2.8255
2 MD-IQA 09771 09793 09106 2.8670
3 MANIQA 09768 09786 0.8891 2.8445
4 AHIQ 09762 09746 0.8810 2.8317
3 QPT 09743 09732 0.8797 2.8272
6 SSIQA 0.9784 09767 0.8905 2.8456
I4 Swin-KAT 0.9831 0.9825 0.9031 2.8687

We use Pearson’s (r), Spearman’s (p), and Kendall’s (t) correlation coefficients,

with the overall score (s) as their aggregate.
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MK-CA Variants

No. Methods Operation r p T S
1 u only - 09331 09331 0.7854 2.6516
2 K only - 09373 09382 0.7954 2.6709
3 U-K Average 0.9405 09375 0.7938 2.6718
4 U-K Concat 0.9391 0.9367 0.7902 2.6659
3) U-K Sum 09436 09380 0.7921 2.6738
6 U-K CA 09352 09321 0.7855 2.6529
14 U-K CA 0.9368 09298 0.7793 2.6460
8 w CA 0.9454 0.9389 0.7967 2.6811

u refers to MLP and « refers to KAN
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Time and Memory Comparisons

Swin-KAT is faster and memory efficient than the LDCTIQA challenge's top algorithms

No. Team Model Time (ms) Memory
1 agaldran Swin & BiTResNeXt50 424.07 1309.89
2 RPI_AXIS MANIQA 44 .87 638.51
3 CHILL@QUK EfficientNet-V2L 138.46 503.63
4 FeatureNet ViT & GLCM 51.08 572.31
5 Team Epoch EDCNN 7211 564.94
6 gabybaldeon CNN-VIT 29.69 942.13
7 Ours Swin-KAT 20.69 441.50
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Conclusions

1 No-reference and reliable deep learning-based IQA solution

1 Transformer model with fixed and learnable activation functions using cross-attention
1 Swin-KAT reliably quantifies noisy and artifact-affected CT images

1 The model achieves a notable reduction in both memory usage and runtime

1 Future research centers on localized IQA across various body regions
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